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ABSTRACT

The plasma resonances observed with the Alouette topside sounder sat-
ellite occur at the plasma frequency, fyy, at multiples of the electron cy-
clotron frequency, fy, and at the frequency fp = (sz + sz)%. These re-
sonances may be attributed to electrostatic oscillations of the ionospheric
electrons in the vicinity of the satellite. The frequencies fiy and fy cor-
respond to oscillations along the Earth's magnetic field; the-frequencies
fp and the harmonics of fy, to oscillations across the field. The absence
of responses corresponding to intermediate angles is accounted for by the
greater group velocity of the pertinent electrostatic waves. These carry
the energy away more rapidly and thus prevent long enduring plasma oscile
lations. The explanation presented, although it ignores the excitation
mechanism, roughly accounts for the observed relative strengths of the

resonances.




1. Introduction

Resonance effects in the ionosphere were first observed during rocket

tests of the topside sounder technique [Knecht et al., 1961; Knecht and

Russell, 1962] and more recently with the Alouette topside sounder satel-
lite [Lockwood, 1963]. The resonances, shown in Figure 1, appear on the

Alouette ionograms as persistent responses extending from the transmitter
pulse at certain characteristic frequencies, often lasting for a few mil-

liseconds. After earlier work by Knecht et al. [1961] and Lockwood [1963],

the identification of the characteristic frequencies was carried out by

Calvert and Goe [1963], who examined sequences of Alouette ionograms. With

the variation of the electron density and the geomagnetic field along the
orbit, this served to facilitate the distinction between resonances and to
expose instrumental responses.

Calvert and Goe [1963], found that the resonances occurred at the fol-

lowing frequencies: the electron plasma frequency, fiy; multiples of the
electron cyclotron frequency, fy; the frequency fip = (fN? + fH?)%, and its
harmonic, 2fip.* Those at fyy, fp, and low-order harmonics of fy are always
observed. The resonance at the fundamental of the cyclotron frequency is
much weaker than that at the second or third harmonic, and is not consis-
tently observed.

It was suggested by Calvert and Goe [1963] that the two major reson-

ances at fiy and fip result from electrostatic oscillation of the ionospheric

* In order to avoid confusion between fif and the fiy of Calvert and Goe
[1963]1, the NASA Topside Sounder Working Group proposed the new notation
fT (T for transverse). We have adopted this convention.




‘plasma along and across the Earth's magnetic field, respectively. Lock-

wood [1963] interpreted the cyclotron harmonic resonances in terms of phase

bunchiing of the electrons as they gyrate about the Earth's magnetic field

lines. Johnson and Nuttal [1964] have elaborated on this and have proposed
a similar excitation meéhanism.

This paper extends and unifies the explanationléf the resonance phe-
nomena. Here the entire set of observed resonances is attributed to elec-
trostatic oscillations. The nature of these oscillations, their dispersion

properties, and the conditions for their persistence are considered. TFi-

nally, a comparison with the Alouette observations is made.

2. Electrostatic Oscillations

Electrostatic plasma oscillations, where the electrons of a plasma

oscillate against the restoring electric force of charge separation, have

been given a variety of other names. Among these are "electron-acoustic
waves," "longitudinal plasma oscillations," "electron waves," "space~-charge

waves,"

or simply "plasma oscillations."” In the face of such multiple ter-
minology, we must emphasize that the term "electrostatic oscillations (or
waves)" will be used for those plasma oscillations where the electric field
is in the direction of the wave normal and where the wave magnetic field
may be neglected. These oscillations may be treated using the electrosta-
tic approximation to Maxwell's equations. At the frequencies where the
resonance effects have been observed with Alouette, the ions remain virtu-

ally immobile and do not take part in the oscillations.

In this paper, previous work on electrostatic oscillations will be
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’adapted for the special conditions of the upper ionosphere, and the special

effects which occur there will be emphasized. In particular, the analysis
of Landau [1946] and Bernstein [1958] will be used.
Electrostatic oscillations in a cold plasma were first treated by

Tonks and Langmuir [1929]. They predicted standing-wave oscillations of

the electrons at the plasma frequency. Later treatments, including that

of Bohm and Gross [1949], incorporated the effects of random thermal mo-

tion and arrived at the conclusion that slowly propagating waves would re-
sult. Landau's [1946] treatment of these waves for a collisionless plasma,

in which the ions were assumed to be stationary, was developed from the
linearized Boltzmamn equation and Poisson's equation. Each spatial Fourier
component of the initial perturbation in the distribution function was treated
separately. It was found appropriate to employ a complex frequency in the
analysis, the imaginary part of which indicates attenuation of the waves
generated by the initial perturbation. This attenuation phenomenon, which
operates even in the absence of collisions (for a Maxwellian velocity dis=-
tribution), is now known as "Landau damping."

Treatments including the effects of an ambient magnetic field have
been advanced by a number of workers, including Gross [1951], Gordeyev
[1952], and Bernstein [1958]. Bernmstein's approach, apart from its use of
the full Maxwell equations rather than the equations of electrostatics, is
similar to that of Landau. In the electrostatic limit, which is used
throughout this paper, and neglecting ion motions, Bernstein's results
show that Landau‘'s conclusions are considerably modified for oscillations

which are not strictly along the magnetic field.
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In Bernstein's analysis, an initial perturbation of the plasma can
lead to two types of waves (if the motion of ions is neglected) which may
usually be distinguished by their different phase velocities. The elec-
tromagnetic waves travel at velocities comparable to that of light; the
electrostatic waves, at velocities comparable to the thermal velocity of
electrons. In the treatment of the former, thermal motions can usually be
neglected. In the treatment of the latter, it is usually permissible to
use an infinite velocity of light in Maxwell's equations, or, what is equiv-
alent, employ Poisson's equation and assume that the electric field of the
wave may be derived from a potential. This procedure will be followed in
the present paper to entirely exclude electromagnetic waves from consider-

ation. The validity of the procedure will then be critically examined.

3. Dispersion in the Absence of a Magnetic Field

It was shown by Landau [1946] that each spatial Fourier component of
an initial perturbation of the plasma electrons generates a longitudinal
electrostatic wave of the form exp(st - ik . f_)’ where s = iw - o, and
where w is the angular frequency, o is a damping constant (the reciprocal
of a time constant), and k = 2m/A is the propagation vector. For wave-
lengths, A, long relative to the Debye length, h, (hk << 1), the approxi-
mate values of the componénts of s are:

i
2

w = wy(l + 30°K° )% ~ uy(1 + 30°K°) (1)

o = (1)1\1(11/8)%h"3]::"3 exp(-2n"2K"?) (2)
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L 1
. where wy = (Ne®/eom)2 is the electron plasma frequency and h = (eokT/Ne?)2

! is the Debye length.

Equation 1 is the dispersion relation for electrostatic waves. It is
the same as that for electromagnetic waves in the plasma, except that the
velocity of light is replaced by 3%hu>N, which is the velocity of electrons

of average thermal kinetic energy. The phase velocity of the waves is

v ~ wy/k (3)

and the group velocity is
u = dw/3k ~ 3h%kuwy (L)

For long wavelengths (hk << l) the phase velocity is therefore higher,
1
and the group velocity is lower, by approximately the same factor 3~ 2(hk)~?*,
i
than the velocity 32hwy of electrons of average thermal energy.

The time constant of Landau damping, from equation 2 is
i
T1, = (8/m)2 n®KPwy ™t exp(Z"in2x?) (5)

It should be noted that this time constant is extremely sensitive to
the value of hk. For eiample, in ionospheric applications, where wy is
typically about 107 radia.ns/second, hk = 0.1 corresponds to Ty ~ 102 secy
hk = 0.2 to Ty, ~ 4 x 107* sec. Landau damping is therefore insignificant

for values of k less than 0.1 ht.
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4. Relaxation of the Oscillations in the Absence of a Magnetic Field

The presence of received signals at certain frequencies for many mil-
liseconds after the transmitter pulse must be caused by slowly decaying
oscillations of the medium in the vicinity of the satellite. The long
persistence of the oscillations shows that they are weakly coupled to the
antenna circuit and therefore probably occur mainly in the uniform medium
outside the ion sheath. Since the resonances are observed consistently,
they probably are not caused by the presence of some special boundary con-
ditions or irregularities in the medium. It seems therefore reasonable to
look for the conditions under which oscillations of limited spatial extent
and of long duration can occur in a uniform medium. Such conditions will
be derived in this paper; they appear to be necessary for the occurrence
of the resonant effects observed with Alouette,

In reality, the medium is bounded by the antenna, the body of the
spacecraft, and the ion sheath around them. The problem of coupling be-
tween the antenna and the medium during transmission and reception will
not be discussed, and therefore no fully quantitative predictions will be
made in this paper about the absolute amplitude of the resonances.

Oscillations of limited spatial extent can be considered as a wave

packet formed from a spectrum of waves with different propagation vectors

k. The smallest possible size of the wave packet will be roughly deter-

mined by the width of the spectrum of spatial Fourier components. If the
width of the wave number spectrum Ak is of the order of k at the center of
the spectrum, then the smallest spatial extent of a wave packet formed from

such waves is about 2n/k. Since the direction of the group velocity is



‘that of k, such a wave packet will not propagate in a single direction but
rather will spread in all directions. It is reasonable to assume that the
spreading will be controlled by the magnitude of the group velocity. Sub-
stantial spread will occur for times greater than the time T obtained by
dividing the size of the wave packet 2n/k by the group velocity u. For

electrostatic waves in the absence of a magnetic field

Ty = 2nK U™ = Enhm2K Pyt (6)

where the value of u from equation 4 has been substituted. It is conveni-
ent to express Tg in terms of the number T of wave periods 2m/w. Substan-

tial spreading will therefore occur after

T = Tgw/en = v/u (7

periods where v = w/k is the phase velocity. This parameter will be used
for the rest of the paper as a measure of the time scale of the oscilla-
tions. Tor electrostatic waves in the absence of a magnetic field the com-

bination of equations 6 and 7 yields

T ~ (3KPK2)H (8)

Equation 7 indicates that oscillations of limited spatial extent and
of long duration occur if the phase velocity is much larger than the group

velocity. In the special case of electrostatic waves in the absence of a



magnetic field, this condition is satisfied according to equation 8 if hk
is much smaller than unity. It may be easily ascertained that for hk <
0.1 the time Ty given by (6) is much smaller than the time Tp given by (5).
The persistence éf the oscillations is thus determined almost entirely by

dispersion and the decay caused by Landau demping is insignificant.

5. Dispersion in the Presence of a Magnetic Field

The starting point here is Bernstein's [1958] equation 40O, which re-
lates the complex angular frequency, =-is, to the propagation vector, k.
It was derived from the collisionless, linearized Boltzmann equation and
Maxwell's equations., It involves the approximation that the velocity of
light and the mass of the ions are infinitely large. It thus pertains
only to electrostatic oscillations of the electrons. This (complex) dis-
persion equation, which corresponds to equations 1 and 2 of the previous

section, is

o]

(o]
1+ b°¥® = iquy exp(-¥’p®sine) }Z Im(k?pzsinae) . f
M = = ©
1
exp[-% 2¥° p2cos”ote - iwg(q + m) tj at , (9)

where Iy is the modified Bessel function, 8 1s the angle between k and the
magnetic field, m is an integer, wy is the electron cyclotron frequency,

® + ix = -is is the complex angular frequency, q = -ks/wyg, qy = wy/wy, and
p = gyh 1s the cyclotron radius of electrons of average kinetic energy.

The integrals in equation 9 may be transformed by the identity

10



® 1 a-/ b £2
if exp(~2b°t? - iat) at = v exp(-a®/p®)(im2 + 2 [ " at) (10)
(o] (o]

where a = mH(q + m) and b = 2%kpmﬁ cosB. Notice that the rest of equation
9 is real except for the factor g which multiplies the sum. Thus the
phase angle of q will be the complement of that of the sum, and is con-
trolled by the integrals (10). The condition for a small phase angle,
which corresponds to weak Landau damping, is that the integral on the
right of equation 10 dominate the iﬂ% imaginary term. In other words, a/b
must be much larger than about 0.7 in absolute value. This means that the

condition for weak Landau damping is

la + m| << [kpcost]| , (11)

for all m. Waves perpendicular to the magnetic field (6 = n/2) will be un
damped. Those at other angles will suffer only weak Landau damping if the
wavelength is sufficiently long (kp << 1), provided that the frequency is
not close to a multiple of the cyclotron frequency (q + m # 0). In the
case of interest here, where condition (11) is met, we may discard the im-
aginary term on the right of equation 10 and confine ourselves to real q.
Equation 9 then takes the form

@

1
1+ (wgf /o) ¥p® = 22q(kpcose)™ exp( =¥ p®sin0) E: I, (8% p®sin®e)

M = =0

1
272(q + m) K'p" secs 2
-
expL-(q + m)2/2k?pzcosee] f et
o

(12)

dt



In order to study the solutions of (12) for small values of kp it is con-
venient to expand this dispersion equation in powers of kp, using the fol- |

lowing formulas:

2e-x2 ‘}]S eta at = TT-% Z (v + 1) (v = 2)! (13)
° v =0
In(y) = Z (5/2)" * 0 [3i(m + 3)1T (1k)
=0

The former is an asymptotic expansion [Fried and Conte, 1961] and the late

ter is the Taylor series for the modified Bessel function [Watson, 1948].
If only first and second order terms in kng are retained in the expansion

of (12) then the approximate dispersion equation is

=1 2 PR3
w{_-f -2 sin®o cos“6 z[: 3 sin®@
=qN ° = + + K° +
Wy © -1 q PUE@E - (@ - )

s et i) et o

If the k2p2 term is neglected altogether then a quadratic equation in q is
obtained whose solution is

2 _af 24 22 2 i 2072)

q="211+q1\1- (1 -af) + by sme]j (16)
This condition is identical to the well-known condition X = (1 - Y?)/(1 -

¥1?) [Ratcliffe, 1959] for the infinity of the refractive index of elec=

tromagnetic waves in a plasma. The frequencies given by (16) are usually



called resonant frequencies [Spitzer, 1962]. They are shown by Figure 2
as functions of 8 for different wvalues of dy. It is to be noted that only
the values of q for 6 = 0 and 8 = 1/2 are actually observed in Alouette
records; these are q = 1, q = qy (or £ = f, £ = fN) for 6 = 0; and q =
(L + qN?)%'(or f = fip) for ® = m/2. The theoretical explanation of the
absence of resonant frequencies which could be attributed to other angles
is discussed in the following section.

In the special case of § = /2, equation 16 does not represent the
only solutions for small values of kp. Although equation 15 does not in-

dicate all the additional solutions for & = m/2, its solution
r - =Y
@® =35+ aqf * [ - 3)° + 12802 12 (17)

results in two values for g. For small values of kp, one of these approaches
(qN? + l)%, which is one of the solutions noted above. The other solution
approaches 2 and thus represents a frequency close to the second harmonic

of the electron cyclotron frequency. Examination of the full equation 12
with 6 = ﬂ/2 shows that similar solutions also exist near all the other
harmonics of the cyclotron frequency. These will be discussed in more de-
tail in the following section.

The results of the present section are that the solutions of the dis-
persion equation for small values of kp, for 8 = 0 and § = n/2, coincide
approximately with the frequencies of the resonances observed with the
Alouette satellite, The decay time of these resonances and the reason for

the absence of observations corresponding to solutions of the dispersion

13
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'equation for intermediate angles are discussed in the following section,

6. Relaxation of the Oscillations in the Presence of a Magnetic Field

Conditions for the occurrence of oscillations of limited spatial ex-
tent and of long duration in a uniform medium are modified considerably
by the presence of a magnetic field. The arguments about the unimportance
of Landau damping are not changed essentially by the presence of a magnetic
field although they are strengthened by the complete absence of Landau damp-
ing for 8 = 90° (propagation in a direction normal to the magnetic field).
The arguments about the spreading of a wave packet are, however, changed
considerably by the anisotropic nature of the medium. In the absence of
a magnetic field a wave packet was found to decay with almost monochromatic
oscillations in the vicinity of the plasma frequency (subject to the condi-
tion kh << 1). In the presence of a magnetic field Figure 2 shows that,
for small values of k, any single direction of the vector k corresponds to
two frequencies. The harmonics of the cyclotron frequency must be added
to these frequencies in the special case when the vector k is normal to
the magnetic field.

The spreading of the wave packet formed by such Fourier components is
again determined by the group velocity which, in an anisotropic medium, is
given by Bw/ag, that is, the gradient of the scalar quantity w in k-space,
Figure 3a shows curves of constant q = w/wH in this space. The surfaces
of constant q are obtained from these curves by rotation sbout the hori-
zontal axis (parallel to the magnetic field). The group velocity is per-

pendicular to these surfaces and is indirectly proportional to the



Aperpendicular distance between them. For kh << 1 the group velocity is
thus almost perpendicular to k for all values of the angle 8 that are not
in the vicinity of 8 = 0 or 6 = /2,

Figure 3a represents the electrostatic approximation of the disper-
sion equation 15. It shows that the curves of constant ¢ become almost
radial near the origin so that a given frequency corresponds to a certain
angle between the wave normal and the magnetic field (c.f. equation 16).

In reality the electrostatic approximation breaks down close to the origin.
The shape of the curves in this vicinity (i.e. well inside the small circle
of Figure 3a) is shown by Figure 3b which represents the cold plasma ap=-
proximation and is based on the Appleton-Hartree eguations [Ratcliffe,
1959]. The significance of the curves of Figure 3b will be discussed later
in the paper; at present only the electrostatic approximation will be con-
sidered.

In order to discuss the relaxation of oscillations corresponding to

I

angles between 8 0 and 6 = ﬂ/2, it is necessary to carefully re-evaluate
the quantity Iz, that is, the scale of the wave packet divided by the group
velocity. Since the constant-frequency curves are almost radial for this
case, the group velocity is approximately u = k?law/ae and it is directed
almost perpendicular to k., Therefore, the pertinent scale of the wave
packet is that also perpendicular to k. The width of the spatial spectrum
corresponding to a given angular width A8 is Ak = kA9 (the approximate
range of the azimuthal component of 5). Thus the scale of the wave packet

is on/kA®. The angular width is determined by the bandwidth MAw of the

sounding system, given by Aw = (dw/20)A8. Therefore,

15



ot /kAQ
Ta = FTog/og = /M

In the case of Alouette this indicates that persistent oscillations should
be observed no longer than the relaxation time of the receiver, also equal
to 2n/Mw.

The situation is different when the pass~band of the satellite includes
a frequency corresponding to 8 = 0 or § = n/2. In these cases the group
velocity is considerably smaller than in the intermediate case, and it is
directed parallel to k. Once again the appropriate scale is given by 2n/k
for Ak the same order as k. Although this scale is smaller than in the in-
termediate case, the greatly reduced value of the group velocity (for suf-
ficiently small k), gives Ty a considerably larger value and thus accounts
for the persistence of oscillations at the limiting angles. As in the ab-
sence of the magnetic field, this persistence can again by measured by T,
the ratio of phase velocity to group velocity. This ratio becomes infinitely
large in the electrostatic approximation as k approaches zero.

Details of the derivations of approximate expressions for the relaxa-
tion time T measured in cycles and for the angular range Oy of the Fourier
components that form the slowly spreading wave packet, are given in the
Appendix for the resonances near w = Wy, W =Wy, ® = Wwp = (wN2 + sz)%,
and w = nuyy where n is an integer and n = 2. The resulting expressions
are given in Table I. Also given in Table I are the calculated fractional
deviations df of the oscillations from the nominal frequency (without the
sign). The table shows that this deviation is only significant for the

Wy Tresonance, for which dp ~ 0.08 for T = 1000. For the other resonances

16



df < 0.0l for 7 > 100 and therefore the frequency deviation is not likely
to exceed the observational error. Details of the calculation of dp are
not given since they form a straightforward extension of the analysis given

in the Appendix.

T. The Validity of the Electrostatic Approximation

In the previous sections the equations of electrostatics were used
instead of the complete Maxwell equations. The errors caused by that ap-
proximation can be estimated by using the quasi-hydrodynamic plasma equa-
tions (instead of the collisionless Boltzmann equations) combined with the
full Maxwell equations. Such a procedure, although it ignores the reson-
ances at the harmonics of the cyclotron‘frequency, should be quite realistic
for the other resonant frequencies, In a direction parallel to the magnetic
field the introduction of the full Maxwell equation causes no change in the
results; the "electrostatic" waves and the "electromagnetic" waves propa-
gate quite independently in that direction. In all other directions the
"electrostatic" or "plasma" wave is a continuation of one of the "electro=-
magnetic" magnetoionic modes. This is illustrated by Figure 3b which is
based on the Appleton-~Hartree equations and represents the form of the
curves of Figure 3a very close to the origin. Figure 3b shows that the
curves do not continue to approach the origin radially but turn to inter-
sect the axis perpendicular to the magnetic field (the 6 = m/2 axis).

The dispersion equation for 6 = n/2 is given explicitly by Ginzburg
[1961, equation 12.8] and can be used to derive T = v/u, the duration of

resonant oscillations, measured in cycles, It is then found that T does

L7
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not increase indefinitely with decreasing k, as predicted by the electro-

static approximation but reaches a maximum value given by

2 + 2
o = Sl e

If, therefore, wy and wy are of the same order of magnitude then the largest
value

of T is about equal to the ratio of the velocity of light c¢ to the mean

thermal velocity Qv th) of the electrons. This means that at the hybrid
frequency, fp, a marked resonance is then only possible if the ratio c/th
is very large. In the plasma encountered by Alouette this ratio is probably
always greater than 1000 and thus the hybrid resonance is not inhibited and

the electrostatic approximation is probably satisfactory.

8. Physical Nature of the Oscillations and their Excitation

The theory of Section 6 is linear in its nature. It may seem paradoxi-
cal that a linear theory should predict oscillations at harmonics of the cy-
clotron frequency since harmonics are usually associated with non-linear
processes. It must be realized that, although the oscillations were con-
sidered to be infinitesimally small, the thermal motion causes the electrons
to gyrate with finite cyclotron radii. Indeed, cold plasma theory does not
predict any special effects at the harmonics of the cyclotron frequency.
These effects depend on thermal motion. A bunching of the gyrating elec-
trons is caused by the alternating electric field (normal to the magnetic
field) which in turn is caused by the bunched gyrations. The present

theory shows that self-consistent oscillations of this type occur very near

18
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to the harmonics of the cyclotron frequency but that the frequency of the
fundemental mode is approximately fip and not fy. Tt is close to the cy-
clotron frequency only for a very tenuqus plasma.

The present explanation of the oscillations near the harmonics of the
electron cyclotron frequency is not complete in the sense that it only ex-
plains the persistence of the oscillations but ﬁot the mechanism of their
generation. It differs in this respect from the work of Lockwood [1963]

and Johnston and Nuttal [196L4] who tried to explain the generation of os-

cillations near the cyclotron harmonics without explaining their persis-
tence. Their suggested explanations of the generation process are, however,
only semi-quantitative and further work is required on the generation pro-
cess,

Further light is thrown on the nature of the excitation process by
the observation of a resonance at the frequency 2fp. It appears very likely
that the actual oscillations in this case occur at the frequency fp, and
that the second harmonic 2fq is produced in the receiver. Oscillations of
the medjum at the frequency fT can therefore apparently be excited by the
transmitter even when it is tuned to a frequency 2fT or presumably to any
other arbitrary frequency. It thus would seem that oscillations of con-
siderable amplitude are excited impulsively at frequencies different from
the frequency of the transmitter. The actual excitation process 1s pro-
bably strongly non-linear and is not discussed here.

Other workers [Warren and Nelms, 19647 described the Alouette reson-

ances in terms of the cold plasma approximation (the Appleton-Hartree equa-

tions). In a sense such a description is not always essentially different

19
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from the one given here since the electromagnetic waves in a cold plasma
become almost longitudinal in the presence of an external magnetic field
and a large refractive index. The waves are then really electrostatic in
nature and it is essential to take the effects of thermal motion into ac-
count to provide their full description. If the thermal motions are not
taken into account, then no lower limit is obtained for the wavelength of
lightly damped and long persistent oscillations. It was shown, however,
in the present paper that the oscillations can only have long decay time
if their wavelength greatly exceeds the Debye length; the exact conditions
are given in Table TI. Conditions of this type cannot be obtained from the
Appleton-Hartree equations; theories based on them such as that of Warren
and Nelms [196L4] and the calculations of antenna impedance in the presence
of a magnetic field by Kaiser.[l962] cannot therefore be used for the ex-
planation of the Alouette resonances without bearing this limitation in
mind.

Nuttal [1964] attempts to treat the excitation of the resonances at
wy and wp in a quantitative menner. He uses first the cold plasma approx-
imation and then the collisionless Boltzmann equation; he neglects sheath
effects and thus is able to use linear theory. He does not, however, ob-
tain detailed quantitative results that could be compared with the obser-
vations. TFurther theoretical work, preferably with still more realistic

assumptions, is clearly required.

9. Comparison with Observations

The most obvious agreement between the theory and the Alouette

20



observations is the agreement of the predicted with the observed frequen-
cies. Furthermore, as will be shown below, there is also general agreement
between the observed strengths of the resonances and crude predictions
based on the present theory.

Resonances are observed for each of the frequencies predicted by the
theory . Furthermore, it is felt that all other observed responses can be
attributed to auxiliary mechanisms. These additional responses are found
to occur at the following frequencies: (1) the harmonic of fp, and much
less often, the harmonic of fy; (2) 1 Mc/s below predicted resonances;
and. (3) at random frequencies above the F layer penetration frequency. As
suggested earlier, the responses at 2fip and 2fy (item 1) might be attribu-
ted to impulsive excitation of oscillations at the fundamental frequency
by the 100 microsecond transmitter pulse, and then reception by harmonic
generation in the early broadband stages of the receiver. This, however,
leaves unexplained the observation that 2fp is much more common than 2fy.
The image responses (item 2) have been adequately explained by Southern
[private communication, 196h4] as harmonic transmission followed by image
reception in the second=-IF circuits of the receiver. Finally, the respon-
ses at random frequencies (item 3), which have been found to occur most
often over populated areas, are attributed to interference by ground-based
transmitting stations. To our knowledge no other prominent resonances ap-
pear on the Alouette ionograms although other points of view have been ex-

pressed [Fitzenreiter and Blumle, 1964].

Agreement between the observed and the predicted strength of the re-

sonances is more difficult to establish. First of all, theoretical

21



predictions can, at their best, only be rough estimates in the absence of

a full theory of excitation and of antenna behavior. Secondly, the response
of the receiver to input signals is complicated, even at a single frequency,
by the automatic volume control circuit. In addition the response is fre-
quency dependent and falls off rapildly below about 1 Mc/s.

The duration of the response on the Alouette ionogram provides the
most easily-obtained rough estimate for the observed strength of the re-
sonances. This duration must depend (ignoring the excitation process) not
only on the predicted relaxation time 2nT/w but also on the angular range
By of the waves which form the slowly spreading wave packet. The quanti-
ties T and 0, are given by Table I for the differeunt resonances. While
neither of these two quantities nor any combination of them can be regarded
as the predicted strength of a resonance-~especially as the value of k is
unknown--certain conclusions can nevertheless be reached. First of all,
it appears likely that the smallest value of k that is appreciably excited
is somehow related to the largest linear dimension of the antenna. With |
antennas as large as those on Alouette, the largest appreciably-excited
spatial Fourier component corresponds to a value of kh probably smaller
than 10°2. This hardly sets a practical limit on the value of T. Since
Table I shows that 6 decreases with increasing T, it seems likely that
the practical limit on 7 is set by the minimum value of 6 that will pro-
duce measurable oscillations for a given mode, For this reason T is also
given in Table I in terms of 6, and Oy The table shows that the expres-
sion for T is a product of separate functions of 8p and qy. With the ad

hoc assumption that O, is constent for each of the resonances, the function
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of gy could be interpreted as the relative predicted duration in cycles
for each mode separately as Yy varies with latitude. However, since the
values of 6y are unknown, it is not possible to estimate the ratios of
strength between the different modes.

A special study of the Alouette resonances was carried out for com-
parison with the functions of column three in the table. In this study,
the duration of the resonances (the lengths on the record) were recorded
and averaged for each value of qy = WNA”H' These averages, with each point
representing one to three dozen measurements, are presented in Figure L,

In order to indicate the spread in the data, flags were added which bracket
the central 50% of the observations (the 25 and 75 percentile limits).
The dashed curves in these figures give the observational limits imposed by
the weakest observable resonance (bottom), off-scale resonances (top), and
the 1 Mc/s low-frequency limit of Alouette (left or right). Superimposed
on the data points are the variations predicted in the table. These curves
have been registered vertically to obtain the best agreement.

Figures la and 4b for fy and fy represent reasonable agreement with
the theory and support its most positive prediction., This is the inhibi-
tion of each of these two resonances at qy = 1. It is, however, unfortu-
nate that the 1 Mc/s lower threshold of Alouette (imposed by the Antenna-
matching network) coincides with this condition and thus obscures in each
case the recovery on the other side. Figures lUc and 4d for f and 2fy
show good agreement for values of qy above 2. The source of the discre-~
pancies for lower values (at higher latitudes) is not known. Figure ke

for 3fH shows surprisingly good agreement throughout the range except for
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the single point at Yy = 3.05. Finally, Figure L4f for Lfy represents agreement
with the theory. In all, the agreement with observations in Figure 4 is
reasonably good in light of the ignored excitation mechanism and receiver

response.

10. Conclusions

The resonances observed by the topside sounders may be attributed to
electrostatic oscillation of the ionospheric plasma. This represents an

extension of the interpretation of Calvert and Goe [1963] to include the

cyclotron resonances.

The resonant frequencies fN and fy correspond to oscillations approxi-
Vmately along the ambient magnetic field; fT, 2fH, 3fH, ete,, to oscilla-
tions across the field. The oscillations at intermediate angles (with
frequencies between fyy and fT) do not persist for long in the vicinity of
the sounder because their energy spreads more rapidly on account of their
greater group velocity.

Collisional damping is negligible in the topside ionosphere, as is
Landau damping for hk < 0.1. The principal mechanism controlling the re-
laxation of the oscillations appears to be the spreading of energy by pro-
pagation away from the sounder. A consideration of this mechanism in Sec-
tion 6 led to the relaxation time, the angular tolerances, and the frequency
tolerances shown in Table I for the various resonances. The expressions of
Table I were used to estimate the resonance strengths and these estimates
agreed resonably well with the Alouette observations where comparison was

possible. Both the theory and the observation will have to be improved
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before a more detalled comparison can be made.

Acknowledgements

We acknowledge helpful discussions with Drs., T. E. VanZandt, D, Walsh,
F. 5. Johnson, J. Nuttal, and W. Deering. Thanks are due to Miss J. Ligon
for assistance with the computations. The research was supported by the
National Aeronautics and Space Administration under NSG-269-62 (J. A. Fejer)

and §-2481-G (W. Calvert).

25



APPENDIX

Calculations of T and Op for the Different Resonances

(a) Oscillations near the plasma frequency fy: 6 ~0, g~ qy

For small values of h°K° and for 6 = 0, equation 15 may be shown to
be equivalent to equation 1 and therefore the ratio of the phase velocity

to the group velocity is given by

T =v/u= (3P (19)

just as if the magnetic field were absent. An electrostatic oscillation

at a frequency very close to the plasma frequency and with duration of
about (3h°k°)™! periods is therefore to be expected. Whereas in the ab-
sence of a magnetic field all Fourier components with wave numbers of order
k were responsible for the oscillation, the magnetic field restricts the
angular range of the vectors to a narrow cone whose axis lies along the
magnetic field. The maximum angle Oy between k and the magnetic field may
be roughly estimated as the angle where the group velocity obtained from

(16) with the aid of the formula (derived from u = dw/dk)
u = K1ow/o8 (20)
is approximately equal to 3h2kwN, the value of the group velocity in the

absence of a magnetic field given by equation 4, The value obtained in

this manner is
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-1 2
T -
O = l“’f:{z Lid (21)
This equation shows that the resonant oscillations are restricted to
a relatively narrow angle about the magnetic field and that the angle de=~
creases as the wavelength, and therefore the duration of the oscillations,
increases. The equation also shows that no resonant oscillations can oc-

cur when the plasma frequency is equal to the electron cyclotron frequency.

(b) Oscillations in the vicinity of the cyclotron frequency fg: 6 ~ 0, g

~ 1

It will be recalled that equation 15, which predicts the resonance
for g~ 1 at 6 = 0, is invalid for integral values of ¢ because the condi-
tion (11) is not satisfied. If |q - 1|/|kpcost| exceeds about 8 (this value
is not critical) then Landau damping becomes negligible and equation 15 be-
comes applicable. If the approximate value of q from equation 16 is sub-
stituted into the limiting condition |q - 1|/|kpcose| = 8, and the result-
.ing equation is solved for 8, then the expression

i
2

e = ™ (xploy® - wy'|) (22)

is obtained for the angle 6., between k and the magnetic field, which has
to be exceeded for negligible Landau damping. Since the angular frequency

w, given in terms of equation 16 is approximately
© ~ o + opey 07 /|er® - | , (23)
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the derivative dw/de will not be constant over the receiver bandwidth which
corresponds to an angle much larger than Ge. The arguments used for an ar-
bitrary angle 6 at the beginning of this section cannot therefore be applied
for the total receiver bandwidth, and the relaxation time of the oscillations
will be determined by that group of waves between, say, 08 andng O for which
3w/38 = bwyey’ /|wy® - wy®| varies relatively little. The width of the angu-
lar frequency band occupied by these waves is approximately ngwN?eez/leQ

- wN?I and the duration of the oscillations will be approximately the reci-

procal of the frequency bandwidth. If 0, from (22) is substituted then
T ~ 107K 2072 ~ 107 KPP Jon® (2k)

is obtained for the duration of the oscillations, expressed in cycles. If
wy and wy do not differ greatly, then equations 19 and 24 yield durations
of the same order of magnitude. If the angular range of the waves respon-

sible for the resonance is taken as 6y = %9 and is expressed in terms of

e

T with the aid of equations 22 and 24 then the expression
5 =& =1 2 213
om = (8 ™)™ wyoy® - 0P| (25)

is obtained.
It should be noted that the angular range given by (25), like the an-
gular range given by (21), contracts to zero when the plasma frequency is

equal to the electron cyclotron fregquency.
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. 1
(c¢) Oscillations near the hybrid frequency fm: 6 ~m/2, g~ (1 + ay°)2

The group velocity for these oscillations may be found from equation
15 after the substitution & = m/2. The result for the relaxation time,

measured in periods, is
T =v/u = (3P (o + o) oy’ - ey’ | eyt (26)

This equation becomes identical to (19) for wy = 0. It is seen that the
relaxation time of the oscillations becomes very short if ng “‘3WH? or
wp = (wNB + wH?)%'~'2wH; the same situation would be found for wp = 3wy,
M”H ... if the more accurate equation 12 were used instead of (15).

The approximate angular range Op of the waves may be found by equat-
ing the group velocity given by equation 26 with that obtained from the

combination of equations 16 and 20. The resulting equation is
Oy = T-l(wN? + sz)z/wNsz? (27)

(d) Oscillations at harmonics of the electron cyclotron frequency nfy:

9 ~m/2, a~n where n 2 2 is an integer

Equation 15 is not directly applicable in this case but its terms not
involving k can be retained if K"2%p™° times the m = -n term of the sum in
equation 12 is added on the right hand side of (15). For 6 ~ /2 the re-

sulting equation is
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o+ L TR
T2 (n1)t sechd eXPL4:2§%pcoge) ] (26)

1l

2
) R
N

-n
22kpcosh 42
e dt

—

[¢]

In the special case of ® = m/2 the first term of the asympototic ex-

pansion (13) may be used to obtain from equation 28 the relation

wi” 1 (@)t T t 2 (2
wy° ©n° -1 2% -1)! g-n 9)

which has the solution

Zn"l 2 -1
q=(n+2)™" ﬁkiﬁ_%_in_ [gi? - nzl_ 1J (30)

1
If ¥°p® << 1 and the equation wif fa® = (n® - 1)™%, or (wg® + w®)? =

nwyr, is not nearly satisfied then q will be very nearly equal to n, as was
assumed, Differentiation of (30) with respect to k then results in the

equation

R R

The angular range @, may be determined from the limiting condition
(analogous to a similar condition used in Section b) |q - n|/|kpcose| = 8;
Landau damping will then be sufficiently small for angles smaller than Sm
since condition (11) is satisfied for these angles. After the elimination

of kp with the aid of equation 31 the limiting expression takes the form
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en - 3 -
I 1 2n - 2
]

O = 9/2 n(n - 1" v~ 2n - 2 Ln(n - 2)! ‘iﬁ: -

n2

(32)
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CAPTIONS

Alouette ionogram showing the various resonances. Recorded at 1437
UT, April 7, 1963.

The two resonance solutions q = w/wH of equation 16 as functions of
the angle 9 between the wave normal and the magnetic field, for two
different values of the parameter qy = wy/wy.

Curves illustrating the surfaces of constant q = w/wyg in k-space for
qq = 1.25 (gp = 1.60). These curves are based on (a) the collision-
less Boltzmann equation and the electrostatic approximation; and (b)
the Appleton-Hartree equation. The latter illustrates the behavior
near the origin.

Alouette observations of the duration of the resonances at the reson-
ant frequency fN. The solid curves give, as functions of qy, the var-
iations predicted in Table I, T(eM = const, qM), times constant fac-
tors adjusted for best agreement.

Observations at fi. See figure ha.

Observations at fp. See figure Ya.

Observations at 2fy. See figure La.

Observations at 3fy. See figure La.

Observations at Ufy. See figure La.
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